We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is the Nernst Equation?

By Jacqueline Byrne
Updated: Feb 27, 2024
Views: 11,450
Share

The Nernst equation determines the resting potential of cell membranes in the body as a factor of the concentration of ions inside and outside of the cell. Cells are the basic unit of the body, and the environment inside the cell is separated from the outside by a cellular membrane. The intracellular environment contains a concentration of ions that is different from that of the extracellular environment, so an electric charge develops, and it is referred to as the resting potential. The ions that are most influential in determining the resting potential are those to which the cell membrane is most permeable: sodium and potassium. There is a higher concentration of potassium inside the cell than outside the cell, and the opposite is true for the sodium ion.

For many of the cells in the body, the resting potential stays constant for the duration of cell life. For excitable cells such as those of the nerves and muscles, however, the resting potential simply refers to the membrane potential when the cell is not being excited. An excitable cell is one that generates an electrical impulse that causes the cell to contract, in the case of a muscle cell, or fire a signal, in the case of a nerve cell.

Excitation results in the changing of the membrane's permeability to ions, mainly potassium and sodium. This allows for the flow of ions from the area of higher concentration to the area of lower concentration, and this flow causes an electrical current that will change the charge across the membrane. Therefore, the Nernst equation is not applicable in this case, because the Nernst equation takes into account only ion concentration when there is no permeability across the cell membrane.

The Nernst equation factors in constants such as the Faraday constant, the universal gas constant, the absolute temperature of the body and the valence of the considered ions. Potassium is the most commonly considered ion in the equation. It is the ion of greatest permeability, so it flows across the membrane most.

The Nernst equation has been criticized because it assumes that there is no net flux of ions across the cell membrane. Realistically, there is never no net flux of ions, because ions escape due to leakage or are actively pumped by the cell across the membrane. In many cases, the more universal Goldman equation is preferred when predicting membrane potential. The Goldman equation takes into account the membrane's permeability to ions for a more accurate assessment of membrane potential, and it can be used for excitable and non-excitable cells.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wise-geek.com/what-is-the-nernst-equation.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.