We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is a Microactuator?

Andrew Kirmayer
By
Updated: Feb 09, 2024
Views: 11,960
Share

Actuators generally use an energy source to move or control mechanical components. They are often found in motors and various machines. Many kinds of mechanical devices have been miniaturized over the years, but this process typically requires the individual components to be much smaller as well. Miniaturization in the 21st century has progressed to the point that microactuators and other parts are so small that powerful microscopes often have to be used to see them. Industrial processes such as lithography and micro machining are used to make a microactuator, and there are various types that can be made as well.

An electrostatic microactuator is one common variety, but scientists can also build electromagnetic varieties that can produce more power to energize a device like a motor. They are sometimes difficult to make, but are fabricated with methods typically used for making integrated circuits. Motors as small as about 0.04 inches (1 millimeter) across have been made, and have often been used by researchers to insert tiny catheters into biological cells.

There is also a piezoelectric microactuator with composite materials that react similar to crystals, which when pushed on, create an electrical voltage. Thin films can be deposited onto silicon that can produce motion over very short distances. They have sometimes been used in micro miniature rotors. Ultrasonic microactuators are often used in small motors built into piezoelectric devices. These can be integrated into autofocus mechanisms of small cameras, for example.

Moving mechanical components can be built on a small scale, but an electrostatic microactuator is typically made of a material that bends on the basis of electrical charges. Motion is generally microscopic in scale and a small amount of force is produced. Some rotational motors and linear motion comb drives have been developed based on this principle.

Microactuators can be used to build tiny mirrors for displays and projectors. Microscopic current relays and small mechanisms to control hard drives often make use of such miniature devices. They are often called Micro-Electromechanical Systems (MEMS), a category which include many kinds of miniature moving parts.

Production of microactuators can be accomplished by etching parts into silicone. Lithography is often used for making circuits. Light, chemicals, and a layer composed of the parts to be added are typically combined in this process. The finished product is usually produced in layers, while micro machining often involves lasers and scanning electron microscopes, for example, to place individual atoms and cells. Both processes can be used to move microactuator parts and build a micro-miniature device.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Andrew Kirmayer
By Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various industries and disciplines. With a degree in Creative Writing, he is skilled at writing compelling articles, blogs, press releases, website content, web copy, and more, all with the goal of making the web a more informative and engaging place for all audiences.

Editors' Picks

Discussion Comments
Andrew Kirmayer
Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various...
Learn more
Share
https://www.wise-geek.com/what-is-a-microactuator.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.