We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Health

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Dendritic Spine?

By Geisha A. Legazpi
Updated: Jan 31, 2024

A dendritic spine, or simply a spine, is a knob-shaped protrusion from the dendrite of a neuron. It looks like a bulb with a thin neck or stalk. The bulb is also called spine head. A dendritic spine is in close proximity to an axon. It receives signal inputs from the neighboring axons, and functions in memory storage and signal transmission.

Dendritic spines are found in most neurons in the central nervous system, including the pyramidal neurons in the cortex; spiny neurons of the putamen, caudate nucleus, and internal capsule; and Purkinje cells in the cerebellum. The dendritic spine density can reach up to 50 spines per 10-micrometer stretch of a neuron’s dendrite. Spines are denser in the cerebellar Purkinje cells than in the pyramidal and hippocampal neurons.

The appearance of a dendritic spine depends on the strength and duration of spine-synapse contacts. A spine head has a volume that ranges from 0.01 to 0.8 cubic micrometer. Some spine heads are described as mushroom-like, stubby, thin, or branched. Generally, the larger the spine head, the stronger and more mature the synaptic contact.

Nevertheless, the strength and maturity of synaptic contact depend on environmental factors. Dendritic spines change in volume, shape, and quantity depending on their exposure to these factors. This characteristic is known as plasticity.

Spines are plastic because they contain the protein actin. This is the same protein present in muscles for contraction and in cytoskeletons for cell division. Based on studies, it has been observed that the actin in spines has an average cycling time of 44 seconds. This dynamic property brought about by actin remodeling means that a dendritic spine could change its volume and shape in a few seconds or minutes. Additionally, spines can appear and disappear completely in a spontaneous manner.

It has been postulated that the plasticity of spines is the basis of memory. In particular, long-term memory is believed to be dependent on the formation of new dendritic spines or the growth of existing ones when reinforced by a learning environment. Among young people, there is a net loss or disappearance of dendritic spines, which is said to reflect their capacity for learning. In adults, most spines do not disappear and instead become more stable. This explains why memories become firmly established in adulthood.

Many scientists believe the apparent association between dendritic spines and memory. A causal relationship, however, is not yet established. Additionally, a theory has been proposed that the increase in the volume or size of the spine heads has greater contribution to memory retention than the formation of new spines.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
Share
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.