What are Catalytic Oxidizers? (with pictures)

Michael Anissimov
Michael Anissimov
Nitrogen is produced by an automobile's catalytic oxidizer.
Nitrogen is produced by an automobile's catalytic oxidizer.

A catalytic oxidizer, or catalytic converter, is an automobile component found in the exhaust system. It oxidizes (burns) carbon monoxide and hydrocarbons, using platinum and palladium/rhodium as catalysts, while reducing (separating the oxygen atom rather than adding it) nitrogen oxides to create nitrogen. This greatly reduces toxic tailpipe emissions and reduces smog.

Catalytic oxidizers can use rhodium as a catalyst.
Catalytic oxidizers can use rhodium as a catalyst.

Catalytic oxidizers became widespread after regulations on automobile emissions were made mandatory nationwide in the U.S. in 1968. Now they are used in most cars around the world. Because catalytic oxidizers cannot operate in the presence of lead, their introduction caused leaded gasoline to be phased out. Catalytic oxidizers are also used in industrial processes to reduce harmful emissions, but their most common appearance is in automobiles.

Catalytic converters, or catalystic oxidizers, are installed in cars to cut harmful exhaust emissions.
Catalytic converters, or catalystic oxidizers, are installed in cars to cut harmful exhaust emissions.

Ideally the byproducts of an automobile engine are only carbon dioxide, water, and some nitrogen. This is similar to the chemical output of animals. But in practice, the combustion process in an engine is never 100% efficient, leaving behind hot, yet unburned hydrocarbons. Prior to the 1960s, these emissions were allowed to escape into the atmosphere, until it was realized that they were a public and environmental health hazard. Now, catalytic oxidizers fitted to a car's tailpipe rapidly oxidizes a large percentage of the remaining unburnt hydrocarbons, resulting in cleaner emissions. However, the speed at which catalytic oxidizers must operate to catch unburnt hydrocarbons before they fly out the tailpipe puts limits on how efficient the oxidation process can be.

The quality of catalytic oxidizers has increased steadily over the years, resulting in cars which are cleaner and cleaner. Still difficult is the lowering of CO2 (carbon dioxide) emissions. CO2 cannot be oxidized into anything more harmless, and it is a known greenhouse gas, contributing to global warming.

Catalytic oxidizers in automobiles operate at a relatively high temperature, around 750°F (400°C). In industry, catalytic converters can be dozens of times larger than those used in automobiles, and several times hotter. Standard subcomponents of catalytic oxidizers include a line burner, catalyst bed, and heat exchanger. The catalyst bed is usually in the form of either honeycombed ceramic or ceramic beads covered in the catalyst.

Michael Anissimov
Michael Anissimov

Michael is a longtime contributor who specializes in topics relating to paleontology, physics, biology, astronomy, chemistry, and futurism. In addition to being an avid blogger, Michael is particularly passionate about stem cell research, regenerative medicine, and life extension therapies. He has also worked for the Methuselah Foundation, the Singularity Institute for Artificial Intelligence, and the Lifeboat Foundation.

Michael Anissimov
Michael Anissimov

Michael is a longtime contributor who specializes in topics relating to paleontology, physics, biology, astronomy, chemistry, and futurism. In addition to being an avid blogger, Michael is particularly passionate about stem cell research, regenerative medicine, and life extension therapies. He has also worked for the Methuselah Foundation, the Singularity Institute for Artificial Intelligence, and the Lifeboat Foundation.

You might also Like

Readers Also Love

Discussion Comments

anon92455

Catalytic Oxidizers are primarily used as a means of reducing or eliminating harmful pollutants from industrial processes. Catalytic converters perform a similar function for automobiles.

Any manufacturing process that has off-gases containing Volatile Organic Compounds (VOCs) or Hazardous Air Pollutants (HAPS)has the potential to require Air Pollution Control, depending on how much their process emits per year. Catalytic Oxidizers are one technology that can reduce air pollution. Thermal Oxidizers, Regenerative Thermal Oxidizers, Bio Reactors and several other technologies can also accomplish some of the same things, and all have conditions where they perform optimally over other technologies.

Some industrial process that benefit from off-gas treatment with Catalytic Oxidizers are: Automotive Paint Systems and curing ovens, metal decorating, printing or coating processes, chemical manufacturing, many biomass applications, and countless other applications that produce HAPS/VOCs.

Post your comments
Login:
Forgot password?
Register:
    • Nitrogen is produced by an automobile's catalytic oxidizer.
      Nitrogen is produced by an automobile's catalytic oxidizer.
    • Catalytic oxidizers can use rhodium as a catalyst.
      Catalytic oxidizers can use rhodium as a catalyst.
    • Catalytic converters, or catalystic oxidizers, are installed in cars to cut harmful exhaust emissions.
      Catalytic converters, or catalystic oxidizers, are installed in cars to cut harmful exhaust emissions.