We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is the Josephson Effect?

Andrew Kirmayer
By Andrew Kirmayer
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The Josephson Effect is the passage of paired electrons through a thin, insulating dielectric barrier placed between two superconductors. A cooper pair of electrons passes through the insulating layer via a tunneling effect. There is no voltage drop while the current stays below a specific level, which is known as the critical current. Under constant, positive voltages, alternating currents as well as direct currents from the passage of electrons are maintained. The effect was predicted by theory in the early 1960s by Brian D. Josephson, and is used to take measurements of very low temperatures and in Josephson junction circuits that can rapidly switch signals to store data.

Electrons pass through an insulating film that is microscopically thin. The Josephson Effect can be controlled by applying a magnetic field which reduces the strength of a supercurrent across the barrier. Magnetic fields are blocked from entering the interior of the Josephson junction by fractional vortices. Current strength rises and falls at different points while the field strength is intensified, allowing for signal passage and switching to be controlled.

When the superconductors are exposed to direct current, electron pairs are passed through a barrier as electromagnetic waves are released, which results in the production of small quantities of light instead of heat. The Josephson Effect can also be applied to radio electronics used in extremely cold conditions, because a Josephson junction can work like an electromagnetic oscillation sensor. Circuits based on this junction can also store data, and can be manufactured into tight spaces because they are so efficient, so use in computers is possible.

The Josephson Effect occurs at very low temperatures, and is most efficient at temperatures close to zero degrees Kelvin (about -460&deg:F). Systems that use this effect can be loosely connected to measure magnetic fields. They can also generate low levels of power as part of generators that can be designed to be switched over many frequencies. How the Josephson Effect is used depends on an engineer’s knowledge of quantum physics, and it is measured by using a variety of complex mathematical formulas.

Instruments that incorporate Josephson junctions use the Josephson Effect to make precise dimensional measurements, amplify electromagnetic signals, and drive fast computers. A Josephson tunnel junction switches signals faster than any other semiconductor switch. Such a system can operate at direct current or microwave frequencies, so superconductors can be used in many different metrology and computing applications.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.