We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Electromagnetic Scattering?

Jessica Ellis
By
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Electromagnetic scattering is the physical effect of an electromagnetic wave, such as light or radio waves, hitting an object. Instead of proceeding in a straight line, as light waves do unimpeded, the light refracts or bounces off of microscopic textures in the object. Electromagnetic scattering is often responsible for the appearance of color, and has several distinct forms.

Given enough knowledge about the scattering particles and waves, prediction of how light will scatter is possible. The process can also work in reverse, as scientific observation of scattering can provide information about the incoming wave and the particles that that are scattering it. The study of scattering has lead to important advances in several areas, including computer-generated imagery, radar, and medical technology.

Why the sky is blue is a popular question that can be explained by electromagnetic scattering. Rayleigh scattering is based on the experiments of an early 20th century English scientist, John Strutt, the third Baron of Rayleigh. His work was conducted on the scattering effects of light waves on particles smaller than the incoming waves. Because blue has a short wave length, it is particularly susceptible to scattering as it bounces off gas particles of the air surrounding Earth. Red, yellow and orange hues are much longer wavelengths, which is why they are only visible in the sky when looking near or at the sun.

Because of the small size of scattering particles in Rayleigh scattering, the shape of the particles is not considered significant. Larger scattering centers are covered by the Mie theory of electromagnetic scattering, named for German physicist Gustav Mie. Mie determined that changes in color and opacity are determinant on the size and shape of the scattering center. His work is considered particularly useful in understanding electromagnetic scattering through hazes or clouds.

Both Rayleigh and Mie’s solutions are considered elastic, meaning that the scattering of waves does not significantly weaken their energy. Several other forms that deal with energy shifts due to electromagnetic scattering also exist, including Brillouin, Raman, and Compton scattering. Compton scattering is considered particularly significant, as it gives evidence that light can have properties of both a wave and a stream of particles. Inelastic electromagnetic scattering is used in several fields, including astrophysics, X-ray technology, and in measuring the elastic response of living tissue.

Electromagnetic scattering is, at its basis, a simple concept, visible in every day situations. The scientific study of scattering is extremely complex, and even the various solutions listed above do not fully explain the effects and results of all scattering situations. What has been discovered has lead to tremendous scientific innovation in imagery techniques, as well as letting us understand at last exactly why the sky is blue.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Jessica Ellis
By Jessica Ellis
With a B.A. in theater from UCLA and a graduate degree in screenwriting from the American Film Institute, Jessica Ellis brings a unique perspective to her work as a writer for WiseGEEK. While passionate about drama and film, Jessica enjoys learning and writing about a wide range of topics, creating content that is both informative and engaging for readers.

Discussion Comments

Jessica Ellis

Jessica Ellis

With a B.A. in theater from UCLA and a graduate degree in screenwriting from the American Film Institute, Jessica Ellis...
Read more
WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.